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i. Introduction

Secant approximations to fimite dimensional matrices are used 1n many
computational algorithms. These approximations are matrices 4,£R™*® that
salisfy a secant equation

Aws =y
for some y€ K™ and s€R™. The most ccaimon appiications, reviewed briefly
beiow, are in solving square or rectangular systems of rioriinear equations, and
In solving unconstrained and constrained optimization problems. [n this paper
we consider more general approximations A,<R™*™ that satisfy several secant

equations

AS=Y

for some S€R™P that nas full column rark ana

1

Yo R™P, anc the use of such
approximations in solving systems of nonlincur equations and unconstrained

oplimization problems.

Tne most basic use of secant approximations is 1n quasi-Newton algorithms
for Lne square systems of nonlinear equations probiem,
given F: f™ +F™ | find z,<R™ such that Flz,) =0
These aigorithms generate a sequence of iterates (|, 2, €R™ k = 3,7, - -, that K |
are increasingly good approximations to z,. The k +i% iteration is based on an
affine model of F{z) around z;,,.
/ - 4 \ [ \ fa a
Meo(T) = F{Zivi) + AciiiZ = T i) (R
where Aey CR™™ s a secant appraommation to F'(z., ;) that obeys the sccant

equation

AviSe =Y (1.2a) p;
where i

Se T Zewy ~ Tk Y = Flze,) ~ Flz,) (1.2b)
Equations (1.1-2) cause M, {z) to interpolate F(z) at z =z, as well as at




r =1,,, Many matrices A ,,€R™™ satisfy (1.2); the standard way to choose

Ac+y 1S L0 update the previous approximation A4 by Broyden's update

We ~ Aese) s )
AkuzAk""“—-—“——‘—k 7 Bl (1.3)
S Sk
(Brovden . 19685]) This update was shown by Denais and Voré  1977] to be the

soiution to

mirumize A — Ac.p sudject o A 8 = Y
AER’\"\

where , .z denotes the Frobenius norm,

PI LD NN WRELS
=1 j=1
That s, 4, is the least change secant update to 4, Brovden, Dennis, and Moré¢

71473} showed that the sequence of iterates generated by the guasi-Newton

i
method
Zpoy = T ~ A VF{ZE)
with 4, { zenerated by {1.3) converges g-superlineariy to a root z, of F{z) pro-
ided zg and Aq are sufficiently close to z, and '(z,). respectively, F(z,) is
nonsingular, and F'{z) is upschxt_z continuous In an open neighborhood contain-
ing zy For further review of secant methods for noniinear equations, see Denmnis

ani Voré 977, or Dennis and Schnaoel | 1 963]

‘n. Jeclion 2 we generalize all the results stated in the last paragraph to
methods where each approximation Ac,, in the affine model {...) satisfies psn
secant equations

AeviSe = Y (1.4)
for S, Ye<KB™™P. The obvious choices of S, and ¥, are

See; = Zyyy — Tearoy . Y€ = F(Zeyy) ~ F{Zeny) . J=1.- - .p (i.5)
where e; denotes the j"‘ unut vector. If 4,,; satisfies (1.4-3), then the affine
modei {1.1) interpolates F(z) at Ze,i_p. ' Ze,y. In Section 2 we give the gen-

eralization of Broyden's update that satisfies (1.4) and show that it is the least




chanze update satisfving these equations. We aiso give conditions on {S,{ and
{Yey under which the quasi-Newton method using this generalized Broyden's
update 18 [ocally g-superiineariy convergent. The material in Section 2 is only a
modest generalization of Gay and 3chnabel [1978]. it is inciuded because the

proofs are simpler and clearer, und Lo motivate the aateria in Section 3.
The other problem considered in tais paper is the unconstrained rmunimiza-

tion problem,

¢ fiz) R"-R
ml:lél;g“l ¢ fq (1.6)

‘ne firsc order necessary condition for x, to be a solution of {1.8) is Vf{z,) =0,
so {1 8) can be considered a special case of the nonlinear equations problem
wiere F{z) = Vf{z). While this viewpoint has limitations, 1L 15 useful in motivat-
ing secant methods for unconstrained minimizaticn In particular, secant
methods {or {1.8) base the & +.% 1teration on a model miz) of f{z) around Zg.,.

Mo \T) = [T} + VS :zkb\)r(‘z—zk+x> + %z _zkHVHkH\'I‘IkH)

where H,, € R™™™ is an approximation to V3f {(z,,). If

He 1S = Y (1.7)
where

- - ( !
Sk T Tk~ Tk . Y =V {Zes) = VS {Z)
thien ¥m, ., (z) interpoiates Vf (z) at z, and zx,,. The major difference between
secant meihods for nondinear equations and unconstrained minimization is that
0 unconstrained minimuzation V4f {z) is symmetric so the approximations § Hy

shiould be too.

Poweil [ 1970] introduced a symmetrized version of Broyden's update that

( T { - \T o T T
Y —Hksk)s,c + S Y ~His ) , Y -H Sk) Sk) Sk S,
Hev, = H, + - K\ %) Ly U kT : & (1.8)
Sk Sk (sksk)

and this update is known as the Powell symmetric Broyden {PSB) update.




Dennus and Moré showed that {1.8) is the solution to

mimmize A — Hjr subject to H symmetric, H s¢ =y {1.9)
He R (i
provided that A, is symmetric; that s, {1.8) 1s the least change symmetric
secant update to H, DPBrovden. Denrus and VYoré '973] showed that the
sequence of iterates generated by the quasi-Newton method
Ty = T ~ HOWVS(z) (1.10)
with {//; { genecrated by {..B) is locaily g-superlinearly convergent to a munimizer

4 of f (z) under appropriate assumptions.

Two other symmetric secant approximations to Vf {z), however, have been
ruore successful in practice. They are the BXCS and DFP updates. The BFGS

update, named after its proposers Broyaen ~67Gj, fletcher _1970], Goldfarb

[

2970}, and Shanno { 1970}, is

T T
Ye Ye  HeSeseHi
Hevy = He ¢+ —5—~ 4 1
BT T yls, s Hese (1.12)

The DrfP update, named after its originators Davidon [1959] and Fletcher and
Powei:  1983]. 1s
(ye = Hesi Ul + Y (ye —Fese)” % (G —Hese)Tse) yewd

- .
Yi Sk (Yese)?

Fotn updates obey {1.7), and have the additional desirabie property that if H s

Heoi = He + (;,13)

symrelric and positive definite and

Ydsy >0, (1.14)
then i,y is well-defined, symmetric and positive definite. In practice, Hg is
chiosen symmetric and peositive definite and (. ©+4) 1s enforced by the line search,
so each /, 1s symmetric and positive definite. Dennis and Moré [1977] showed
that both the BFGS and DI'P updates are least change symmetric secant updates

n an appropriate weighted Frobenius norm, provided that f; 1s symmetric and

{2 “4) holds. The DFP update is the solution to




rinimize W T(H - ()W p subject to i symmetric, Hse = Y (1.15)
iR :

«na the BFGS update 1s the soiution to

minimice [ W{H ' = H YW . subject to F svrimuetric, M osp = yg (- 16)
He Rnxn {1

waere o both cases VLT e Crlrw Tor oaaen w7

a2 g

Ny nons.no

-

Broyden, Denns and Moré 1973

showed tnat the iterales gencrated by (1.10)

using either the BFGS or DI update to aeneralce (£} converze locally and g-
suyperlinearly to a munimizer z, of f{z) under reascnabic assumptions. Algo-
rithms using the BFGS updale have proven to be the most rerast and eflicient
secant algorithms for unconstrained munimiZai.on 1 pract.oe  r'or more infor-
fLetan onosecant metneds {or unconstrainea muiurn.zation see Dennis and Moré

977 . reitcner (800

i
. N N

Gull, Murray. ana Wr.gnt (%o’ or Jennis and Schnabe.

‘Lon 3 of this paper considers meihocs {or cnconsiranec minimization
where the Hessian approxamation ff,, 18 askea ¢ sausfy p<n secant equations

Heo1Se = Te (1.17)

for S,. Y. </™P. 1f Sy and Y, are chosen in the cbvious way
NP I | - N P (e« -y
Se@; 2 Zepy = Ther-y . Tkl = Vf{Ze) = VS i3/ 1= p . (1.18)
tnen ne new quadratic mode.: woula interpoiate the p most recent previous gra-

SIS A &

. A P N IR 7o qt
Ve kv ;0 =V Zey 5, 70 p il
cowever (L9 may be inconsislent wild Lne regueeroment Lhal ., de sym-

Tiewric Scction 5.1 gives very simpic necessary and saflicient condit.ons for
there to be symmetric, or symmetric and positive definite, fl,, satisfying
v. 177 if these conditions are salisfled, tnen ail Lo resiwts about the PSB,
3r°GsS, and 2P updates mentioned in the two previous paragraphs can be gen-
eraliced to symmetric updates that satisily {1 17}, and to munumization algo-

rithms that use these updates. Section 3.2 gives the generalizations of the PSB,




PP, and BFGS updates that satisfy multiple secant equations, and shows that
they are least change symmetric updates in Lhe same norms usea in {:.9),
7). and (D i6) respectively  Scction 3.3 considers a special case of sym-
metric updates sausfying multiple secant equations that has reccived consider-
e attention, the “projected” updates introduced by Davidon  (970] ancd subse-
Tuenty considered by Denrus and Schnabel 198%), Nazareth 1976, Schnabet
"0/7.°978). ana others. Here one assumes that H, already salisfies p—! of the
p vecant equations imposed upon f ;. We show that several of the projected
-aates aerived by these authors are special cases of the zgeneralized PSB, DFP

« v updates given in section 3 2. Section 3 4 gives conditions on 15, ] and

7. .ader whnen the iterates generated by [1.13), using lht generalized P3B,
oo siUdS updales, converge locally and g-superiinear.v Lo a minimiZer z, of
f .o, Tnv preefs require only minor modification of the tcenr:gues of Broyden.
J t J 1 y

Dennis and Yoré _1973] und Denms and Voré 1974] Finally in Section 3.5 we
precpose several ways for the preceding matenial on unconstrained mimmization
Lo have practical application, by suggesting scveral reasonable modifications of
Yo aiven by {7.18) that wouid allow symmetric {and positive definite) updates
saltsiving e Sk = Ye t> exist. These modifications to Y. do not aiter the
current secant equation /., s, = y,. and alter the cther secant equations in a
reasonabie way  The resuitant algorithms obey the conditions of Section 3.4 for

G-rudorinear convergence.

PR~ |



2. Multiple secant equations for nonlinear equations

‘The most basic use of secant approximations is 13 quasi-Newton methods for
sow.ng systems of nonlinear equations. The approximation problem underlying
1me stundard methoas 13 o find an A, 27 Do anieh 4,y =y, where s<R™ and
yi H™. As we mentioned In Scction 1, the miost success{ul practical methed 1s

bused on cnoesing the A, that solves

"

minmize A, — A p  subectto 4, s Ty
A CRMIN

where A ™™ The generaiization of this approximaticn probiem to multiple

secant equations s

mirumize A, — 4 p subjectio A, 5 =Y 2.1

I1’€Hm‘ﬂ

wryere N QPP YOR™*P The solution fo (2 1) 15 given in Theorem 2.0,

The remainder of this section discusses methods for solving square systems
of nonlinear equations where at cach iteration, the upcate given in Theorem 2.0
< used to caiculalte a Jacobian approximation . o K77 that satisfies
A Se = Y. for some S, Yo CR™ P A special case, cons.aered by Barnes {1965]
ane Gav and Schnaoel ((978]. 1s when cach update enforces ihe new secant
(nuation and preserves some old secant equatiuns salsfied by 4, Updates with
tr.s property are sometimes called "projected secant updates”. The least
chanze projected secant update, a simpie corojiary of Theorem 2.1, is given 1n
Uorc.ary 220 Theorem 2 5 then gives gencral conaitions on {5 and (Y] for a
Guas.-Newton method based on least change multiple secant updates to be g-
nrnearly, or g-superlinearly, convergent [t uses a generalization of the Broyden,
Denris, and Moré [ 1973] bounded deterioration theorein that we state in
Theorem 2.3, and the Dennis-Moré [ 1974) characterization of g-superlinear con-
verjence that we state in Theorem 24 Corollary 2.6 shows that the g-

superiinear result of Theorem 2.5 applics to a class of methods that enforce the




current and some past secant equations, including the method of Gay and
Schnaoeir This class of methods also incluaes some alzorithms nct considered

by Gay and Schnabel that may be of practica. interest

Theorem 2.1. Let p<sn, A€R™, ScR™P, VIR™® rank,S)=p Then the
unique solution to (2.1) 1s

/

. s L v T Oy + T
A=A+ (Y -4 8) 58y (22)

Proof: It s straightforward to derive (2.2) by rezardirg (2.7} as m linear least

squares problems STp, = 2,.1=., - .m inthe variaovies 6, where b, = row i of
A,—4 and z, = row i of {¥Y-AS) A auffercent proof, given beiow. uses Lechniques
of Dennis and Moré | 1977 that are more closely related to the techniques we wili
Lse in Section 3

C.oarly 4, given by (2.2) is well-defined and =atisfies 4, § = Y. Now let
£ BT 5e any matrix satisfying B S = Y. Substituting BS for ¥ 1n (2.2) aives

Av=A = (B-A)S{STS) ST = (i ~4) P
where P o= S{STS)'ST 1s a Euclidean projection matrix and thus P 5 = :
Therelore
WAy A p s B-Ap P = B -4 p

e soiution s unique because {2 i) i1s a minimization problem 1a a strictiy con-

VeX LOorT over a convex set. b

“he use of secant updates in solving systems of nonlinear equations was

reviewed .n Section ©. The standard secant update for nonlinear equations,
Hrovaco ~ update, causes the affine modei
My (z) = F(Zi ) + Aen1 (T — zeesy) (2.3)

of £7{x) around z,,, to interpolate F(z) at z, and =,,, An obvious use for multi-

piv secant equations in solving systems of nonlinear equations is to cause (2.3)




to interpolate F{z) at additional past iterates. For cxample, 1if }ztﬂi 1S a

sequence of p, past iterates satisfying

k:l“: >l’2k> . >lpkk>0 \ (24)

and /1&.|S;C = }’k where
Slce,- = ZTeyy "IIJ,, . Yl:ej = Flxe ) - /'m\yzt],‘) . (.9)
then M. {z) interpolates Fiz) at Ty, j=2 - - p as well as at zp and z,,.

Conditions for a method based on the above sccunt equations to be g-
superlinearly convergent are given in Corollary 2.6, [Clearly. S; must have full

column rank to guarantee the existence of 4., )

A special case of Lthe above is when all but one of the function vaiues that we
ask Mg, ,.z) to interpolate already are interpolated by M, (z) Barnes .965] and
Gay and 3Schnabel [1978] consider a strategy that has thus property. They ask
the model M,,,(z) to interpolate F{z) at p, consecutive pust iterates, as well as
at z¢,; In the notation of the previous paragraph, Uus means that l; = k+1-J,
7= - .pe. Thus

Skej = T _zkolq' ! Ykej = F(zkol) - F("rkﬂ—j) : (26)

Due to the unearity of the modei (2.3), 1t 1s equivalent to define

> - Y Y 5\ AT \ !

Skl = Teagey ~Zewy ;o Vi€ T FlZeve ) — FlZeei-j) {2.7)
darnes and Gay and Schnabel aiso assume that p, < pe +.. meaning that any
previcus function values that M., ,{z) shoutic intcrpolate aiready are interpo-

watea by M {z). If the secant conditions are defined by {2.7), this implies that

(;’k_Akék)ej:O' J=2 P
50 that

Yo — A Se =(Ye — A Se)eie] = {yp — Aese) el
where Ag +15¢ = Y, 18 the current secant equation, 1.e.

Sk T ZTger — X . Yk =F(zk*l) _F(zk) .
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if the sevant equations are defined by {2.8). then 1t 1s ¢asy Lo show that

e = A Se)ey =lye —Aese) . 7=l o

Yoo i . AT
Ye =& S = Ge T -lhcst) e /

1

noellnor case Y - A4 D) s arank one malrix  Jorchary < 2 snows tnat tae least

change muitiple secant update is a rank one upcate (n this case.

Coroliary 2.2. Let the conditions of Theorem 2 . be salisfied, ana jet Y — AS =

] {y — 4s)vT where v< R™ 1s nonzero. Then the anigque sciution to 12.1) 18

Ay =A+(y —as)uw’

wrerce
w=S {8

A

Proof: w.mediate from Theorem 2

if © =e¢ as in the methods of Barnes ana Gay and Schnabe., then 1t is

straightforward to show that w 1s a multiple of the Kuciidean projection of the
first coiumn of § onto the hnear éubspace orthogonal to the remaining columns

of & Tne term "projected secant update” comes from this reiationship.
A :ccul method based on the muitiple secant updates discussed above is to
et vach I, ,, Lo be the root of M, (z),

Teoy = T ~ ACF(Z) (2.8)

tnen choose N, Y, <R P, and update 4, to

Acvi = Ae + (Yo = A Si) (SIS S (2.9)
Theoren: 20 gives necessary conditions on {S,{ and } Y| for the sequence of
iterates generated by {2.8-9) to be locally q-linearly, or g-superlinearly, conver-
gent to aroot z, of F{z) where F {z,) 1s nonsingular. The linear result 1s based

on Theorem 2.3, a slight generalization of the bounded deterioration Theorem

cdoe o e




11

3.2 1n Broyden. Denrus, and Moré [ :973], which differs only in that q, = 0. The
proof of Theorem 2.3 1s onmutted; see Theorem 9.2.2 of Schnabel '1977)] for a
proof of a slightiy more general theorem The superlinear result is based on the

well known theorem of Dennis and Moré ' :1974] which we restate in Theorem 2.4.

In the remainder oi this paper, ., denotes the {. veclor or matrix norm.
For any S€R™* with full column rank, X(S) denotes the {; condition number of
S. K(S) = iS|| {(STS) ' ST For any zeR™, we define N{z.3) to be the set

Yz €R™ ¢ jz—-zli<ni.

Theorem 2.3. {Broyden, Dennis, and Moré | 1973]. Schnabei . 1977])
iet F R™-+R™ be continuously differentiable 1n an open convex set D, and

assume tnere exists z,€0, >0, and y>0 satisfying N{z,.n)T0. F{zx)=0, F{zy)

15 nonsingular, and 'F{2) - F(z) € y 22—z for aliz, z <N{zx*n). Consider

the sequence {z,.z,. { of pomnts in R™ generated by {2.8), where the
sequence tde, 4. - - { of matrices in K™*** sausfies

iAoy = F{Zu) pS A = Fl(Za) p (0% 0 i) + 0o e (2.10)

Me = MAax §i Ty "'.2'- Tk TTe o Tk-q, —ZTa (2.11)

k=0.1. - - lor some fixed a;=0, az=0, with g = rmunik.g{ for some fixed g=0.

Tnen for each r€{0.i), there exist positive constants &{r), é(r) such that if
Zo— Iy S &(r) and [Ag—F{z,) p = 6(r), the scquence {zg z;, - | 1s well
defined and converges to z, with

1Ty ~Tg ST Ty — Iy,

for ail k. Furthermore, {4} and }4;{ are uniformly bounded.

Theorem 2.4. (Dennis and Moré | 1974])
Let the assumptions of Theorem 2 3 hold. Let {4, be a sequence of nonsingular
matrices in A", and suppose for some Z €K™ the sequence of points gen-

erated by {2.8) remains in D and converges Lo Z,, With 7, # z, for any k. Then




A e

12

{zx s converges g-superlinearly to z, if and oniy if

A = Flze)) (Teer — T )"
hm A (Za)) (Tksy — i) -0 (2.12)
ke Teey — Tk

Theorem 2.5. Let the assumptions of “heorem 205 nota. Coasider the sequences
1T, § and (4} generated from zo R and AcCR™*™ by (2.8-9) where S, Y €R™ Tk
with each pe < in). Suppose lhere exist ¢;>0, cp>:!, ¢=C, such that for & =
0 .

Y ~Flzy)Sep<sce, Seomaxi o, —xyd. 1=-,0....q, {2.:3)

and

K(.Sg )=<co (2.14)
where cach g, < maxtk.gq! Then there exist €20, 620 such that if zg -z <¢
and ‘Ag - F'{z,), < 6. the sequence |z, 1s well-defined and converges q-linearly
to zy. and {Ac§. A ! are unuformly bounded. If in addition, for each k there
exists ve ¢ B for which

Se Ve = Teey — T (2.15)

then the rate of convergence is g-superlinear

Proof: Let J, = F{z,). From (2.9),
(Acii=Jw) = {A—=J ) (I =S (SIS ) 'S + (Ye—Jw Si) (STS,) 1 ST . (2.16)
Define Pe = S (SISe)'S{. and recali that ;Pe;. / ~ P <i. Then using also

{2.13), with y, defined by {2.11), 1n {2 .6) gives

i:Akbl - JliiFS » - Jn;:.“ I - Pk:» + ka —Ja Skf.F fl(SkTS/:)_l SkTL.

<A = Jalip + 0y K(Se) e
therefore from (2.14). Ag.y satisfies {2.:0) with ;=0 and az=z,c,, which proves

g-iinecar convergence.

To prove g-superlinear convergence, define E, = (A4, — J,). Since P, is a

Fuchdean projection matrix,
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. . D - ] . Ek Pkn; - -
be d =P p=UE R ke P A< Ep p - (..7)
R ik p
Then from 12.18), {2.77), (2 :3). and {2.:4),
- . . whie P P
Eevpp S Fe £ S itk
~ Tk
wnich implies
(Ew Pe P2 Ee p{ B p = Frorw + 0100 1) (2.:8)

“rom the proof of linear convergence, there cxist p. 8¢ {0.=) such that S Ue S p
1=0
and Fp g < B forall k& Using these bounds and summ.ng (2 .8) from k=0 to j

gives

. B . - l‘ . s
VB P P<2B8(Ec' s = hgerp + oy g‘ e ) <28 (B+p)
k=C =C

which proves that

LIEE Fe Pe »=0 (2.:9)

Finaliy we show that, if {2 15) 1s true, then {2 .9) umplies the Dennis-Voré condi-
tion {2.12) for superiinear convergence. Define s, = (Z,, — ) Then from
2.15),

N - > TN ST QL - 9 I
}'lk/)ksk = ‘L‘Ic Sk\*\'kbx) Se *Slcbk = h,‘bkv,‘ = Lksk .

50 tr.al by the definition of an induced matrix norm

£ P Fe Pese. _ Fe sk
e Pl vy St
and from {2..9)
Ey Sk .
lm ————<lm £, . =0
ko Sk k soo

Thus the method {2.8-9) satisfles condition {2.:2) of Theorem 2.4 and 1s g-

superiinearly convergent. .

Theorem 2.5 says, roughly, that if A+, Sk = Y are reasonable secant equa-
tions in that F'{z,) S, is close enough to Y., and if the columns of S, are

sufliciently linearly independent, then the method {2.8-9) will be locally q-
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lineerly convergent, if in addition the most recent secant equation Ay, ;S = ¥
always 15 included, the method will be g-superlinearly convergent. Corollary 2.6
<now=x thal the choices of S, and Y, aiven by {2 4-b), which cause M, ,{z) to
interpoiate F{z) at p, not necessarily consecutive past iterates including the
mnost recent, sausly these criteria as long as the past ilerates are cnosen so that
each Se is sufficiently lincarly independent. and there i1s some upper bound on

how many iterations back the secant equations can go.

Corollary 2.6. Let the assumptions of Theorem 2.3 hoid, and let g=! be fixed.
Consider the sequences [z, and {4y gencrated from rcd K™ and Age R*™” by

(26-9), where for eachk, 1 <p, S minfk+., 7. qf. Sp. YeCR" 7% with

KS)<c
for some fixed c=1, and
Skej = Ty ~ Ty, Yee; = F{Zesy) — F(xt,.,,) COJEL P
where
k=2l >la > >l >maxil k+i-gf .

Then there exist £. 6 >0 such that if | zg—Zy, . <& and A; — F (za)) <6, the
segquence (. d 1s well-defined and converges g-linearly to £,. Furthermore, {4}
and 1A-Y are uniformly bounded. If .=k for all k, the rate of convergence is

g-super.inear.

Prool: Bv a weli known lemma {see for example Section 3.2.5 of Ortega and

Rheinboldt , 1970}),

HYe=F {zx)Sk) C’j‘! <7 t'zkn—l‘z),‘f!‘max I HE ST "2:,”—2:.' j<v ffskej‘f Hic .
where the last 1nequality uses only the definitions of S,. and of w, from {2.1:).
Thus

iiYe = F{Zw) Selir <7 iSeir te <V y Skl pe .
so (2.:3) 1s satisfied and g-linear convergence is established by Theorem 2.5. If
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L1e=k for all k, then g-superlinear convergence follows trivially since (2.15) is

true wvith vy =e, for all k. .

The strategies covered by Corollary 2.6 for choosing the past iterates whose
function values the model will interpolate include the strategy implemented by
Gay and Schnabel [1978]. as well as the strategy used by Schnabel and Frank
{1983] in their "tensor method" for nonlinear equations. Schnabel and Frank
always select Spe; = (Z¢4; — z¢). Then they consider, in order, the steps from
Tpe1 YO0 Zg-s * * ° . Tev1-q: they inciude e, — 2, ., as a column of S; if and only
if 1t makes an angle of more than 45° with the linear subspace spanned by the
already selected columns of Sp. Their experience is that the best results are
obtained using only information from fairly recent past iterates; they restrict
Dx. and g, to be at most Vn. This strategy ailows considerably more flexability
in choosing past iterates than the strategy tested by Gay and Schnabel; it would

be interesting to test a secant algorithm for nonlinear equations that uses it.
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3. Multiple secant equations for unconstrained optimization

Now we turn to the unconstrained minumization probiem (! .6), which we
reviewed opriefly 1n Section -. The standard quadratic model of the objective
function,

Mea(2) = [{Zeer) + 5 (Zee ST =2e 1) + Bz -2 )T Henr(Z =2e41) . (3.2)
could interpolate several past gradient values if the symmetric approxamation to
the Hessian ., obeved several secant equations

Heoy Se = Ve (3.2)
where S, Yo €R™P are given by (1.28). Several authoers, starting with Schnabel
_2977]. have noted that {3.2) may be inconsistent with the symmetry of H,;. In
Section 3 © we show that there exists a symmetric, or symmetric and positive
definite, Hi,, satisfying {(3.2)1f and only if ¥/S, is symmetric, or symmetric and
positive defirute. respectively. While the natural choices {1.18) of S, and Y
sat.=fy tnese conditions if f{z) 15 a positive definite quadratic, for zeneral f{z)
YZS, usually i1s not even symmetric. In Section 3.5 we attempt to remedy thus

difficuity by proposing several reasonable ways to perturb ¥, to a f’,‘ for which
T

Y. 8. 1s symmetric and positive definite. The preceding sections, 3.2-3.4, discuss
the updates and metheds that may be used if the conditions for symmetric (and
pes:tve gefinite) multiple secant updates to exist are sausfied. Section 32
introduces generalizations of the PSB. DFP, and Bi'GS updates that satisfy {3.2)
and shews that they are the icast change updales in tne appropriaie norms. In
section 3 3 we show that several “projected secant updates” that have been pro-
poted for unconstrained mirimization are speciai cases of the updates discussed
in Section 3 2. Section 3.4 shows that quasi-Newton methods based on our gen-
craiizations of the PSB, DFP, or BFGS updates are locally g-superlinearly conver-
gent under standard assumptions. The methods proposed in Section 3.5 satisfy

the conditions for q-superlinear convergence.




3.1. Necessary and Sufficient Conditions for Symmetric Multiple Secant

Updates

Theorem 3.1. Let p<n. S, YCR®P, rank(S) = p. Then tnere exist symmetric
H,CR™™ such that /1,5 = Y il anc only of Y75 1s symmetric. There exist sym-
metric and pasiuve cefinute H,€R™™ such that #,S = Y if and only if Y7S 1s

symmetric and posit.ve defirule.

Proof : Unty if . Suppcse toere exists a symmetric M, for which 7,5 = Y. Then

ST = VTS s symmecne, Sumilarty, if £, 1s symmeiric wng positive definiie,

then &7 F, S = YTS 15 symmetric and posiuve aefinite
If - duppose ¥YTS 15 symmetric. Then
Hozyisisy st + 53Ty YT - 5578y v vTsyisTsyisT {3.3)

1= wel.-cefined, symmeiric, and ooeys H,S = Y. Now suppcse YTS 1s symmetric

e

and positive definite. Then
- 7 -1
Hy=y (Yisy' v7T
15 weli-defined, symmetric, obeys H,S = ¥, ancd is at least pos.tive semi-definite.
VRS ST . .
Aiso rank{Y = p from Y-S nonsingular. Thusif p=n_ H; 1s positive defirute. If
p<n, el ZER™™ pe any maltrix whose columns all are in, and together span.
b nuil SPase of U, tnai ix, Z7S =0, m =n—p, and rank{Z) = n—p. Then
~ P T~ « o
Hy=Y Y™yl v 7 27 (3.4)

3 weli-aclined, symmetric, obeys /S = Y, and is at least positive semi-definite.

Now et UER™* ™ P) be an orthonorma!l basis for the null space of S. Then Z =
r

UMV whnere NoR™4PP) has full column rank, i.e. NTN is nonsingular. Then

from (3.4).

Hy= M, M, M{
where M|, M, € K™,




]
1 ! { f
A"’I 1 = Y ! U \ N 1‘!1 2 = i

Cicarly A, 1s nonsingular, and since

i _rtsiyTud

wils! IR ]
SRS IR

M, 1s nonsingular. Therefore H31s nonsingular and hence. positive defimite. =

{

Note that the above proof could be simplified slightly by defining Z=U, how-

ever the more general definition of Z will be useful to us in Section 3.2.

Now let us consider whether the conditions of Thecrem 3.1 are likely to be
satisfied in the context of an unconstrained minimization aigorithm. Suppose,
as in Section 2, that Ez‘,ki is a sequence of past iterates satisfying {2.4) and S,
Ye « R™"P% are defined by

Seey = Tpar Ty, . Tee, = VS Ze) =VSzL) . 77 P {3.9)
If f{z) s quadratic, then ¥, = ¥8f(z) S,. so YIS, 15 symmetric for any Zrtjkl.
and Y7S, is positive definite if V°f {z) is positive definite and Sg has full column
rank. When f{z) 1s not quadratic, however, il is uniikely that Y{S, is sym-

melric, as tllustrated by the following example.

Fxample 3.1. Let zeR? f{z) = Wz 1])? + ¥z 2))° + ¥z 2])*, and suppose
¢ [

sorme xzorithm generates g = (-2, —2), 2, = (-1, —=1), zp = (=, 0). If, in the

nciaiton of the preceding paragraph. Ty, = Te-j. Jj=..2 then

5 fo:1 _ fo ]
IR PP R PIPTY
an:a
(NI
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Since the naturai secant equations for unconstrainea minimization, Hg S,
= Y. with S¢ and Y, defined by (3.5). rarely will satisfy the conditions of
Theorem 3.0 when pg>!, it might seem that the topic of multiple secant equa-
tions for unconstrained minimization is fruitless In Section 3.0, however, we will
show now a practical algorithm for unconstrained mirumization might generate
multiple secant equations that satisfy the conditions of Theorem 3.I. without
changing the current secant equation. Sections 3.2-3.4 investigate updates and

methods that are possible when the conditions of Theorem 3. are satisfied.

3.2. Least change symmetric muitiple secant updates

The reader may have noticed that the equation {3.3) used in the proof of
Theorem 3 . reduces, in the case when p=:, to the PSB update of # = 0. The

corresponding update to a nonzero / would be

Hpspg = H + (Y=HS)STS)'ST + S(STS) W ¥-HS)T (3.8)

-~ S{STS) HY-HS)TS(STS) 15T
Fguauon {38) 1s a generalization of the PSB update {..8) to multiple secant

eguations. hence the name "PSBg” Hpsgy 1s well-defined and HpsggS = Y as
{ong as § has full column rank; if / is symmetr:ic, then il i1s easy to see that
Hpsp; s symmetric if and oniy If ¥TS 1s symmetric. The rank of Hpspy ~H is at
most 2p. We show 1n Theorem 3 2 that if YTS and H are symmetric, then Hpgpgg
ts Lhe least change symmetric update to H, 1n the Frobenius norm, that satisfies
H.S =1

Correspondingly. the DFP update (1.13) may be generalized to

Hpemy = H + (Y=HSYYTS)'YT + Y(YTS) Y Y-HS)T (3.7)
- Y(YTS) (Y-HS)TS(YTS) VT
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{lpwp, 1s well-defined and Hpppy S = Y whenever ¥YTS 1s nonsingular; 1t 1s sym-
metric if / and YTS are symmetric. Again, Hprpg —H has rank at most 2p. We
wiso show :n Theorem 3 2 that if # and Y7S are symmetric and positive definite.

then Hppp, 15 the solution to

munimize W TH, -HYW e (38
H,eRM*" A

subject to F, symmetric and positwve definite, f/, S =Y ,
where W< /A™ ™ is any nonsingular matrix that satisfics #7w S = v.
The reader also may have noticed that the matrices /{3 and Hy used in the
proe! of Theorem 3.1 are related to the BFGS update. inf{act, If A 15 symmetric
and pos:tive definite and

Z = Hh~ HS (5T#S) ' STH% (3.9)

tnen the matrix Hg given by {3.4) 1s

Hipgsy = H + Y{YTS) ' YT — HS (STHS) ' 8TH (3.10)

a gencraization of the BFGS update [1.:2) if STHS and Y7S are nonsingular,

Happey 15 well-definea and Hpppsy S = Y Hppgsy 1S symmetric if H and YTS are
symmetric. Hgppsg —H also has rank at most 2p. Theorem 3 2 also shows that if

{# ana YT are symmetric and positive definite. then Hyepsy 1s the solution to

mintmize CW{H,' - H HwT . 3.0
H, e Rnxn (3.2

supbject to /f, symmetric and positive definite, H, S =Y

for any nonsingular We ™™ that satisfies #7W S = Y.

Theorem 3.2. Let psn, HeR™™ symmetric. S, ¥ ¢R™P, YTS symmetnic,

rink!S; = » Then the unigue solttion to

minimize  H, — H p subjectto //, symmetric, H,S =Y (3.12)

H,cRrEn

s Hpsg, given by (3.6) If in addition H and Y7S are positive definite, and

WO R™™ s any nonsingular matrix that satisfies #TW S = Y, then the umque
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soiutions to {3.8) and (3.11) are Hpgp, given by (3.7) and //pues, given by (3.10).

respectively

Proof : If S has full column rank and /. Y75 are symmetric, then clearly Hpspg
awven by (3 8) is svmmieiric and sausties Hogy, S = ¢ Now jet 7,0 ™" be any
symmetric matrix satisfying H,S = Y, and define Lpspg = Hpsgy—H., £ = H,—A.
Then substituting H,S for each occurrence of Y in (3.6) gives

Epspg = EP + PE — PEP = EP + PE{/-P) {3.13)
where £=S(STS)'ST 1s a Euchdean projection matrix Recait that P < 1,

/=4 < and P/ -P) = 0. We also use the fact that for any #,, Mz e ™",

CMP o MA{[=P).F = MP b+ MfI=P) }+ 2 trace(M,PU-PYM])

—

[
i

~

MyP B+ (Ma(I-P) B
Tnus from (3 13) and (3.14),
Epsgg # = EP, B+ PE(I-P) ¢
s EP.f+ P2 E(I-P)F
= EP %+ E{-P)p= "k}

with the last equality coming from another application of (3:4). Thy z~ows tha!
(36} !5 a solution to {3.22). The solution 1s unique because (3.72, .7 9 minimiza-
tion problem in a strictly convex norm over a convex set.

if 7/ anc YTS are symmetric and positive definite, it 1s straightforward to
verify that the generalized DI'P update (3 7) is (3.4) with

Z = Hh -y !lYyTSy 1 sTH%

Cltearty 278 = 0, and since /7% 15 nonsingular and ¥, 8 ¢ R™P 7 has rank n—p
Tnus from the proof of Theorem 3.1, Hpppy is symmetric, positive definite. and
satisfies flpppy S = V. The proof that Hpppy s the solution to {3.8) then follows
irom applying the standard transformation of variables technique to the above
proof for the generalized PSB; see for example Denrus and Schnabel {1979].

Finally. since the generalized BFG3 update {3.:0) 1s (3 4) with Z given by (3.9),
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the same arzument shows that it 1s symmetric, positive definite. and satisfies
Hywgsg S = ¥ The proof that Hgpgs, 15 the solution to (3 11) aiso 1s obtained in
the stancard way First the duar DEP resuit 3 eniained, that st ;3 shown that
the soiution to {3 11) 1s
HIV s H Y+ S-H Y)Y S) W8T+ 50y Sy hs=f inyT 3.15)
- SYTRY VN S=-H 'WTS(yTs) T

Then it 13 straightforward to snow that for /7, - civenbv (3 "5}, M, = Hgpesy. ®
> g

Vary algebraic properties of standard symmetric secant updates can be
extenace to symmetric multiple secant updales [Por examipie, Lthe anajog of the
Hrovdcn one parameter class (Broyden 1570]) is

i) = Hgpesy + V VT V= (HSSTHS) ! = y(yT8)y Yy (STHS)?
where f #P*P s any symmetric matnix, £, M) s posiuve definite if # 1s posi-
Live definite, and Fpppy = [1,{[). Also. the Choiesky factorization of fpppy or
Hyegs, Tay be oblained in ()'\nzp) operations irom the Cholesky factorization of
/1. for example if H = LLT then Hgpgsy = JJ T where

J =L +(YG - HS)(STHS) ' ST,

for G< KPP satisfving

GT(¥Ts)G =5STEs

J can be calculated in O(n%) operations, and its /& factorization can be

coiained .n an additionai O{n%p) operations

3.3. Projecled symmetric secant updates

Davidon | 1975] proposed a quasi-Newton algorithm that finds the mimmizer

of a positive definite quadratic 1n at most n+. iterations. To accomplish thus,

cach quadratic model interpolates the gradients at current and all past iterates:




i

that s, for each K,

Ve () =Vfiz,, . 7=0,1,- -k BV
Fquation {3 .8) implics that

where S . Ye o, - /™% are defined by

N

Se €, Teaer3=Tk 5 S0, e =V min Y Ee G = e 52T K

Sinularly at the next .erat.on, Davidon' s miethed regu.res
B 4

Feel S = X%

where S, Y, TR

Sk, = Seer ; Tk®, Tl . 1 s

It is suraaghiforward {rom the above defimiticnas that

Ye = 12eSe = (Yo = Hesep o]
that is, [/ alreaay =t sfies & of the £ +7 secant eQUaUTRs oG a wpoa i,
Symmelric secant apdates (hat Sausiy e (S = Y wner S 20 0 quat
(377 15 Lrue were 1nvesugated by Daveocn | 975 anc swoseouloile by
authors inciuding Jennis ana schnabel 1800 Naevarein G780 0 eng Scanaenc

L1977, 1973; They oftun are caded “projected cecant upda v

~

Corcitary 53 shows Lol Ly netessary ang ~oloent corcasons o8 .1

o Lo At ' N | o
meLric fecant upaato: to salsfe ih U o soneral S oz lodow immediatey from
Theorem 5.7, if these conaions are sacsfied, the Spaates duscussed un Zecuorn

3.2 reduce to rank two uplalcs

Corollary 3.3. it p<n [/ H™" symmewric, Y. ¥V L /27P rankY) = g8 = o,

Y- HS ={y - Hs) e 13.u)

Then there exist symmetric /, for whuch H#,5 = Y if and only

STy — He) = ae, 319}

where 0 = sT{y~/s) In this case, the generahzed PSB upcate (36) is a rank
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two update of 7/ 10 addition B positve deflinte. Lhive (hete exnt syutiietion
and positive definite ff, for whuch £{,5 = Y if and oniy 1! (3 7 9) s satisfied and

. ro0T>0 SR

where 7 = elr(STHS) e, In tnes case, ooth the generalized UVP update (37
and the gencralized 8°GS update (3 10) dre pesiive Sefinie and rand \no

updates of //

heorerr 3 there o~

Proof : efine t = y-/ oom

SR TR § o TOIE
ing /7,5 = Yiland eniv {0 N msvmimelse 5TOG (o

ISR KPR A L
s T . . . \ ,
Since H 15 symmelric, Y05 a5 symirnetrioaf and only T o7 sunie mitiple O

-~ .7 \ r . PN
e; Since [NTt) 'l = s7r o og, Unisas pesabie anc o f03 090 0 wrae

e

1.

{3 :9) 1s satisfied then the generalizea Poi3 update s s e, ang 2an Tong!
< ¥

ing (3 18) and {3.7¢) into (3 8) shows that 1ni this case i1 )s Ul rank Wwo apdatc

T
Fi,oo= il gy —tsts v sy —Hs) -G

where s = S{S75) e,

Also from Theorern: &7 tnere  Xust pos. e Gehirale /4. vor whaeh 7400 R

,,
S
,

and only if Y75 3 synometr.coand posiive aeflte e svnneing ans e

tive defimite and 77 90 ova tnos Troan oo el

PN =N s J o 32
IS synametric Sirae N A SO Dol U e s Tran Tard
Y78 as pestive defiote 5wt s T auL s i Ol Coamc, cubstotatin,
VSR ang (30 Cooaves o g et anZed T D pduie s Ui Case Lo e
. ) - .
I fiyg vy Ty :

where ¥ = Y(y7Y; ‘e, sabstituting 1008 and (5.20) inie 0 S0) and wsing ine

LS

-

Sherman- Yormison-%ooapury formuia for tne inverse of (120 qives the general-

1zed BFGS upcate in this caee o b

 — SN INIm—————— |
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r T
i, =iy o Hss i (120
T{.raT) T
wheres = SIST1US) Yoy = Y(STHS) Ye, = Hs+rt .

The necessary and sufficient cenditions for projected symmeiric secant
updates (o interpoiate several pist gradienis have HDeen discussed by several
authors, starting with Schnabel [1977] A: we alrcady have indicated, thev
rarely are satisfied if f'z) 1s nonquadratic, even1f {3 *7) s truc  in our opin.orn
this 15 tne fundamental recson why projectag symmoine secani uptatus navr

not been an unprovement over the BFGS n praciice The procotea i upaate

.

',

(3.22) was proposed by Sennabel | 9771 and an algoritam (ool uaes 1L was saown

to be g-super'inearly cenvergent. f f{zr} s quadrac.e 5 22 < the dua of e
& / 1
update originally proposed by Dav.aon "9750 kv projeciee 0G5 updale (30,

1s derived by Dennis anc Scnnaber (567

3.4. Superlinear convergence of quasi-Newton methods using symmelsic mui-

tiple secant updates

Vevpm 4 et . < v Nty Ve g e
A dccal metnod DI Lo unslTaied mMIMIZalon 0ased .. W SyILmeir

mutlpie <ccant updates discussec n Secton 5.2 18 Lo seiect cacn terate X Lo

A T T

ve the erl.cal pont ] the current guadratic mos

{aaln.

- el T B | v I I
“gtl T "k ok VJ \‘k/\

v , ey, AT N
then choose S, Yo ¢« F such tnat Y/ S, 1s symmetric, and upaate fe oy tac

s c . T e .
generalized Phtcnsdale 1070 eraf YIS also 1s positive dgefinite. by the zenors

iced DEP {3 7) or BEGS (5 10) update. (When we refer to updates 16, 3.7 ar 3 3§
In this section. we assume that the symbols Hpggy. flpepy. and Hargsg 10 these
{formulas have been converted to /4,,, and that al! other svmbols in these for-

mulas have been given the subscript &£ ) In this section we show that 1f {5, { and
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} Y. { obev the same conditions {2.:3-14) as were required for the iocal conver-
gence of the multiple secant method for nonlinear equations, then any of the
aforementioned methods for unconstrained minumization 1s locally and g-
superlineariy convergent to a mimmizer x, of f{z), under standard assump-
ticns. neorem 3.4 proves the local g-superlinear convergence of the method
that uses the generalized PSB update. The proof 1s based on Broyden, Dennis,
and Voré 1973)] and Dennis and Moré | 1974], and 1s very sirmlar to the proof of
Treorem 2o Theorem 3.5 states the analogous resuit for methods using the
generalized DFP, or BFGS, updates. The proofs would follow from the proof for
the ’SB method. Since these proof techniques are so well established, we omit

the proof of Theoreri 3.5 and just make a few comments about it.

Theorem 3.4. Let F: K"+ £™ be continuously differentiable in an open convex
set [), and assume there exists z,€D, n>0. and =0 sausfying N{(z..n)CD,
Fizy)=0 [izy)1s symmetric and nonsingular, and " F {z) - F{z), < yz-z
for aii < 2z ~NV{z*m) Consider the sequences {z,j and {H,{ generated from
x LK™ ang a symmetric Hge ™™ by
Zeey = Tk — HO'F(ze)

snd wne generailzed PSB update (3.8), where §Sei, (Y cR™™ with each pg
€ “.n, and each Y/S, symmetric. Suppose there exist ¢;=0, cz=1, 320, such
that fore =0, ., -,

Ve = F(Za) Seap S cyiiSeii maxfizey —zy . 1=-10,... g (3.24)
and

K{iSk.) <ce (3.25)

where cach g, < maxik.g{. Then there exist £20, 6>0 such that if zg -z, <¢
and Hg — F'{za)!< 6, the sequence {Z,} i1s well-defined and converges q-linearly

to z4. and {/{. tH ' are uniformly bounded. If in addition, for each & there

exists v, € R°* for which
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Se Vg = Tee1 — T .

then the rate of convergence is g-superlinear.

Proof : Let Hy = F{zy). Ex = (He — Ha), P = Si{S{Sk) !SI Then from {3.6) it

1s straightforward to obtain

Eeo = Be = B Pe + (Ye—Hu Se)(S{Se)'ST = P By + Se(S{Se) (Ye—Hau Si)
+ PoEe P — Si{S{Se) WY —Hy S)T Py
= ([=P)E{I=Pe) + (Ye—Hyx Se){S{Se) 'S
+ S (SIS ) (Ye=Ha Se)T (I-Pe) . (3.26)
Thus using 1./ —Pe, < 1, {3.24), and the definition (2.11) of .
L Eeerip S UElip il =Pe B+ 1 Ye—Hx Seip (SES)'SE (0 + =P )

< Eeip +2¢; K{Sp)se -

Therefore from {3.25). H.,, satisfies {2.10) with a; = 0 and ap = 2¢,cz which
proves g-linear convergence from Theorem 2.3. To prove q-superhinear conver-
gence. derive from (3.28)

(Eeenir S B (I=Pe)lip +2c) Coplp
The remainder of the g-superiinear proof then is identical to the g-superiinear

proof in Theorem 2.5,  »

Theorem 3.5. Let the assumptions of Theorem 3.4 hold, and assume in additicn
that / {x,) 15 positive definite. Then Theorem 3.4 remains true if the general-
1zed PSS update {J 8) is replaced by the generalized DFP update (3.7). or by the

generalized BFGS update (3.10).

The convergence proof for the generalized DFP methed is very similar to
the proof of Theorem 3.4. The modifications required are similar to the
modifications Broyden, Denrus. and Moré [1973] use to convert thetr proof for
the PSB method into a proof for the DFP method. Bounded deterioration is pro-

ven using the weighted Frobenius norm
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Ec = Ha* (He ~Hy) Hyt i
It is straight{orward to show from (3.7) that
= =PIET-P)T + (=5 (N TS) BT+ Y (R T85) MY =5 U=R)T

where

e

Y, = H®Y, . S, = H%S,, P, = [-Y,{Y"S) ST,

and from (3 24),

M= Peis v O). P <1+ O{u) .

lincar convergence follows easily from these relations and Theorem 2.3, and g-
superhineaer convergence from the same techniques used in tne proof of Theorem
3 4 Tne convergence prool for the generalized BFGS method is essentially the
duai of the DFP proof, as in Broyden, Dennis, and Moré. Note that ¥!S, positive

defirute 1s implied by {3.24) and F'(z,) positive definite.

The crucial question 1s whether there exist reasonable choices of §5,{ and
{ Ye{ that sausfy the conditions of Theorems 3.4 and 3.5. The following section

provices a positive answer to this question.

3.5. Forming muitipic secant equations for unconstrained optimization

The obvious use of multiple secant equations in an unconstrained minimza-
tion aigerithin would be to aliow the quadratic model {3.1) of f{z) around z;,,

to interpolate gradients at p, > past iterates }z,}ki, J=i.° ' Pk, Where

k-_-llk)lgg)“')lpbkéo. (327)

This wouid require the model Hessian fi,,, to satisfy p, secant equations

Heoy Sk = Ye (3.28)
where S, Y, cR""P* are defined by {(3.5). Unfortunately, Theorem 3.1 shows that

(3 28) is consistent with H,, symmetric (and positive definite) only if YIS, is
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symmetric {and positive defirute), and Example 3.7 indicates that this 1s unlikely

for nonquadratic f(z). In this section we discuss several ways to perturb Y, to

- T
Ye = (Y. +AY:) 50 that ¥, S, 1s symmetric (and positive definite). These methods

all yield {AY;)e, = 0. that 1s. the standard secant equation 1s unchanged, and

they all generate sequences {S,{ and i;’ki that satisfy the conditions of

Theorems 3.4-5 for local q-superlinear convergence. The general aim of these

T
methods 1s to perturb Y, as little as possible consistent with Y, S, symmetric,

and to change more recent secant equations less than less recent secant equa-
tions.

For the remainder of this section, we assumne that {S;} and {Y,{ are defined
by (3.5 327), with {l;} chosen by a procedure that guarantees K{(S,)
sufficiently small; a suitable procedure 1s described at the end of Section 2. We
also drop the subscripts & for the remainder of thus section. Now we describe

our first strategy for calculating 4Y.

{t 1s trivial to calculate the lower triangular matrix L€ /P*P for which
YV’S-5Ty=~L+ LT (3.29)
Note that the diagonai of L 1s zero. From {3.29), {¥7TS + L) 1s symmetric. Our
first strategy is to choose AY such that
anN's=1r . {3.30)
Equation {3 30) implies that for each column {AY)e; of AY, unly ((AY)e;)7{Se,).
1<1<J, nced be nonzero. Thus we may choose {AY)e, = 0, leaving the standard
secant equation intact. This choice is guacanteed if we choose the smallest AY
that satisfies {3.30). in the Frobenius norm. From Theorem 2.1, it 1s
AY =S (STs)y' LT . (3.31)
The above choice of AY guarantees that {Y+AY)TS 1s symmetric, but not

necessarily that it 1s positive definite  An easy modification that assures positive

defiruteness 1s to first choose a subset of the rows and columns of (Y7 S+L) that
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15 positive definute, and restrict the past points used to this subset. This selec-
tion 1s easily accomplished using a modification of the Cholesky decomposition
of Y75 +1) the normal decomposition is attempted. but 1f the addition of the
j* row and column would cause the matrix not to be positive defimite, then the
7** past pont ‘and the j* row and column of (¥"S+L1)) 15 eiiminated. If the
normal line search condition in a quasi-Mewton method for munimuzation,
(Ye )T(Se,) > 0. is satisfied, then this strategy always rctains the current secant

equalion.

In Example 3.2 we apply this strategy to Example 3.1.

Example 3.2. Let S, Y €R%?2 be the matrices S, and Y, irom Example 3.2. Then

o -6
Y's - STy = 1
6 0
o ol
so /. = i—us 8 . Since {¥TS+L) = {E 241} is positive definite, both past points

can be retained. From (3.31)

o :2
AY = S(STS) LT = ! |
[ 0 -6
S0 that
. [0 131
Y= | b
te 4]
It (s easy to show that under the assumptions of Theorem 3.4, there exists
¢ >0 for which ,'f;’— F{zw)S!<cuS u udefined by (2.:1). Let Hy = F'{z,). We
showed i the proof of Corollary 2.6 that
LY ~HySlpsVm y 'S u .
so that
. (YTS = STH,S'p<svn v, S%u.
| Therefore
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L= i/V2) L+ LT g2/ YIS - STY &
< (1 /V3) (YTS-STHWS) = (STY - STHWS) r<Viny.S u
and

DAY p< S(STS) Y Lp<V2n yK(S) S:iu .

Thus

WY = HyS p< Y —HyS.p+ AY p<c S.u (3.32)
where ¢ = vV y(VZK{5) + ). From Theorems 3.4-5, this implies that a generai-

1zed P3B, DFP. or BFGS algorithm that chooses {5,§ and § Y| to satisfy the con-
ditions of Corollary 2.6. and modifies Y, by {3 31). will be locally g-superiinearly

convergent Lo a minimizer x, where ¥/ {z,) is nonsingular. Sufficiently close to

T
T 1332} guarantees that Y S wiil be positive definite.

When using multipie secant equations 1n conjunction with a generalized DFP
or BG3 update, 1t may be more reasonabie to find the smailest AY, 1n a
weignted Frobenmus norm. that satisfies {3.3C) It 1s straightforward to show

that, for #e&™** nonsingular, the solution to

mimmize W TAY 5 subjectto (AY)T S =1L
AYeRM=P '

AY = wTws (STwTws) ' LT

If we ussume that the past points have been restricted, if necessary, so that
(YTS+1) s positive definite, then a reasonable choice is # for which wTws =
(Y + AY). 1L s easy to show that this choice results in
AY =Y (STy) ' LT .

Y= (Y + AY) also can be shown to satisfy the conditions of Theorems 3 4-5.

We briefly describe a second strategy for perturbing Y that may come
closer to the goal of changing recent information as little as possible. It is to
change cach column of Y only as much as neccessary to meet the symmetry

requirements imposed by more recent (already revised) secant equations.
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Aligepraically. this means

Algorithm 3.1.
Set (AY)e, =0
2 torjy=2, - - pd

2.1. Select 6§ R™ to munimuze 0 .

subject to { Ye; +6)7 Se; = (Se,)T{Y+AY)e,, i=1. -~ j-l.
22 Sct{AY)e; =46
That s, column ) of AY 1s chosen to be as small as possible subject to the PR
coiumn of the 7% principal submatrix of ST{Y + AY) equauny the j** row of this
submatrix The first two columns of AY generated by Aigorithm 3.0 are the
same as are Lhose generated by {3.3.), the remaining columns would, in general,

be different.

ST{Y + AY) generated by Algorithm 3 . aiso might not be positive deflnite.
It i1s easy to modify Algorithm 3.7, hcwever. lo generate ST{Y + AY) positive
defimte, by generating tteratively the Cholesky factorization of the current jxj
principal submatrix, and, if the j** step fails to keep the submatrix positive

definite, eliminating this point from the set of past points used at that iteration.

Aigorithm 3.1 has a close relationship to our first strategy for choosing AY.
From step 2 2, AY = SLT. where [ is lower triangular with zero diagonal. Thus
(Y +AYYIS = (YTS + [STS) 1s symmetric, so Algorithm 3.7 1s equvalent to
finding tne unique lower triangular {with zero diagonal) L for which

Y'Ss - STy = [§Ts - sTsLT |

ana then choosing AY to solve

minirmuze [AYllp subjectto AYTS = [STS .
AYeRN*P
(Y + AY) generated by Algorithm 3.1 also obeys the conditions of Theorems 3.4-

5, since It can be shown that

M
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AY ps VR Y+ KS)P S u

Since p and A{S) will be small in practice. the constant in the above equation is
not too large. Finaily, a weighted version of Algorithm 3.! can be obtained by

changing the norm in step 2.1 to a weighted norm

The strategies given in this section may oot be tne npest ways to generate

multiple secant equations for munimization. They do show, however, that reason-

able choices of | Sg{ and i?ki exist that satisfy poth the existence conditions of
Theorem 3 . and the local g-superlincar convergence conditions of Theorem
3 %5 Mavbe they will lead to successful computationar algerithms. We do think
there s a significant difference between the strategies of this section and algo-
rithms that have used projected updates such as those discussed 1n Section 3.3.
While both approaches interpolate multiple past gradients when f{z) is qua-
dratic. the strategles of this section should come closer to interpoiating past
gradients for non-quadratic functions, because they do not compound the inter-

polation errors of previous updates. The cost is a higher rank update.
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